
4/17/2015
v1.0

chipKIT™ PIC32 Interrupt Handling
As you might already know, the chipKIT™ platform is based on the Microchip PIC32MX and PIC32MZ

microcontrollers (MCUs). In this document, we will provide a deep dive into PIC32-based interrupt

handling. For the Microchip Reference Manual for PIC32 Interrupts, click here.

General Concepts
An interrupt happens when a hardware event on the MCU suspends the normal flow of execution. At

this time, the execution switches to an ISR (Interrupt Service Routine) in order to perform the required

task, after which, execution returns to its previous state prior to the interrupt. Since hardware events

can occur at any time, interrupts are unpredictable, so we do face some challenges with program

execution flow. Because of interrupts, data used by a program can seemingly change unexpectedly, at

any time, within a line of code, or within a multi-cycle instruction of the program, but this is all part of

the ‘interrupt’ process. In order for this process to work properly, ISRs require special prologue and

epilogue code that will do the following:

 Preserve the execution state of the main-line program

 Instantiate a state suitable for the ISR to execute and then restore the main-line execution state

when ISR execution is complete

The context switch to an ISR is actually quite complex, as many things need to happen:

 Setting the instruction pointer to the vectored ISR

 Preserving the program register sets

 Setting and restoring execution priorities

 Enabling/disabling interrupts

 Dealing with many other hardware conditions potentially beyond the programmer’s required

understanding

As you can see, an ISR is not just a regular function, but a special routine that contains important code

sequences. Fortunately, the compiler can generate the ISR prologue and epilogue code for you as long

as you specify the resources the ISR will use, so thankfully, you can successfully write and use interrupts

with only a conceptual understanding of the details.

Interrupts (IRQs), Interrupt Vectors, and Events

People often use the term ‘interrupt’ in a collective sense, to describe the more fundamental

preemptive event implemented in an MCU. In reality, however, there are three components of the

‘interrupt’ system: events, interrupts (IRQs), and vectored interrupt service routines (ISRs). As you might

see, they can be easily confused. In fact, even example code in official documentation often provides

unnecessary code sequences. To help dispel some confusion, we will review the three components in

more detail.

4/17/2015
v1.0

Events

The event is the fundamental signal of a microcontroller. An event is not controllable; it happens in

response to some condition and results in a flags being set in a peripheral registers. Here are the steps

that take place:

1. A condition produces an event

2. System sets the associated peripheral register flags

Unfortunately, because people often confuse the various components of the ‘interrupt’ system, they say

inter-peripheral “interrupts” instead of inter-peripheral events. This in turn leads them to write bad

examples that enable interrupts and clear interrupt flags, when those actions are unnecessary. For

example, to trigger an SPI transfer on a DMA (Direct Memory Access) event does not require you to

enable interrupts, check interrupt flags, or provide an ISR routine because such events merely happen,

and they are automatically cleared. In other words, the SPI will continue to get an event each time the

DMA signals it without the need for enabled or cleared interrupt flags. Regrettably, this is probably the

most commonly misdocumented error in most examples.

Let’s move on to the next component of the ‘interrupt’ system.

Interrupts (IRQs)

The word ‘interrupt’ is actually a short name for ‘interrupt request’ (IRQ). For each event in the system

there is an IRQ number assigned to the event. All events are wired to the interrupt controller where the

event will set a program accessible “IF” flag. It is the interrupt controller that bridges events to interrupt

requests (IRQ). In a sense, the interrupt controller is, in itself, another hardware peripheral that

responds to hardware events by setting the program accessible flags in response to the event. For the

most part, the interrupt controller exists to trigger the transfer of execution to an ISR; it does not exist

and does not participate in triggering other hardware peripherals.

Depending on whether the IRQ is enabled in the interrupt controller (the “IE” flag), the interrupt

controller may initiate a transfer of execution to an interrupt service routine (ISR).

Perhaps some confusion arises between events and interrupts (IRQs) because as programmers, we think

in terms of responding to IRQs as presented by the interrupt controller. Since the interrupt controller

responds directly to all hardware events, it is easy to confuse whether we are writing code to the event

or the interrupt controller’s IRQ. Hardware peripherals are wired directly to events and do not require

the interrupt controller to be triggered, whereas ISRs are triggered by the interrupt controller, a layer

above events. When an event is triggered in the hardware here is what happens:

1. A condition produces an event

2. Any peripheral hard wired to that event will have its peripheral register flag set and will respond

to the event as the peripheral is configured.

3. Since all events are wired to the interrupt controller, the “IF” flag associated to that event is set

in the interrupt controller.

4/17/2015
v1.0

4. If the interrupt controller is configured to trigger an ISR by having the “IE” flag set, execution is

transferred to the associated vectored interrupt service routine (ISR).

Note that because there is a one-to-one mapping of events to interrupts for PIC32 devices, the PIC32

documentation often refers to events as interrupts. That is ok as long as you understand what we just

discussed about the difference between events and interrupts (IRQs).

Interrupt Vectors and Interrupt Service Routines

The interrupt controller is responsible for initiating a transfer of execution to an ISR when an enabled

interrupt is triggered. In order to do this, the interrupt controller needs to know what ISR to trigger and

it does so by looking up the interrupt vector pointer in an interrupt vector table based off of the IRQ

number. However, just because an IRQ has been presented to the interrupt controller, the following

conditions must be met before the interrupt controller will transfer execution to the ISR:

 The interrupt flag (IF) is set

 The interrupt is enabled (i.e., the IE flag is set, and master interrupts are enabled)

 The priority of the ISR is higher than the currently running code

Here are the steps that take place, now taking into account interrupt vectors and ISRs.

1. A condition produces an event

2. The “IF” flag associated to that event is set in the interrupt controller

3. If the IE flag for that interrupt is enabled, and master interrupts are enabled, and the

interrupting priority is higher than the current running priority, the interrupt is taken

4. The interrupt controller maps the IRQ number to an interrupt vector index

5. The interrupt vector table is indexed, retrieving the ISR address

6. Execution is transferred to the ISR

For an interrupt to be enabled, both the global interrupt enable (CP0 Status.IE) bit and the interrupt

enable flag for the specific interrupt (IECXx) must be set.

In addition, the priority (IPCx) level of the interrupt must be set to one of the seven priority levels

available to PIC32 devices. Priority 0 is the lowest, but also means the interrupt is disabled. Priority 7 is

the highest interrupt priority. If two interrupts need to be serviced at the same time, the one with the

highest priority will be serviced first. In addition, a lower priority interrupt running its ISR will be

preempted by a higher priority interrupt.

Subpriority levels are available in the same IPCx registers, but they affect the CPU behavior when two

interrupts of the same priority occur. In this case, the interrupt with the higher subpriority will be

serviced first. If one interrupt is being serviced and another interrupt occurs with the same priority but a

higher subpriority, the new interrupt will have to wait for the other ISR to finish first.

Notice that the execution of the ISR is not dependent on the underlying event, but on whether the

interrupt flag (IF) is set. The interrupt flag is usually set by the hardware in response to an event.

However, it can also be set manually in software simply by setting the IF flag for the desired IRQ.

4/17/2015
v1.0

On the MX MCUs, there is a many-to-one mapping of interrupts (IRQs) to interrupt vectors (ISRs). That

is, several peripherals will share the same interrupt vector, or ISR. For example, SPI, UART, and I2C share

interrupt vectors, or ISRs. There is an implication here, if you ever enable an interrupt, you better have

an ISR for it because the interrupt vector will get executed. If no ISR is installed, either a default ISR will

be executed, or an ISR fault will occur. In the chipKIT core libraries, we have preinstalled every interrupt

vector to point either to the general exception fault ISR or to a core peripheral ISR handler—if it is one

of the chipKIT core’s natively supported peripherals (like the serial-monitor UART).

The many-to-one mapping of IRQs to ISRs does cause a complication, though; if the chipKIT core is to

support multiple peripherals that share an ISR, there has to be a way to dynamically set the ISR at

runtime so that the appropriate ISR for the peripheral is installed for the intended peripheral in use. For

example, let’s say you want to use UART2 in one sketch and SPI4 in another. Since both UART2 and SPI4

use the same interrupt vector number/ISR, there has to be a way at runtime to install either the UART2

ISR or the SPI4 ISR, depending on the application. To do this, call setIntVector() to install the

appropriate ISR for the peripheral in use. However, for chipKIT core peripheral libraries, such as Serial,

DSPI, or DTWI, setting the ISR is handled automatically for you and you don’t need to worry about using

setIntVector() (more on these specifics later).

On the MZ MCU there is a one-to-one mapping of IRQs to interrupt vectors, so no peripheral will share

ISRs with other peripherals, and technically the use of setIntVector() is not needed. However,

setIntVector() is supported on the MZ so that user-defined ISRs may be installed at runtime without

knowing the specifics of the interrupt vector table. This also allows for common code to be written for

both the MX and MZ MCUs.

What happens after the trigger of an interrupt
The things that happen after an interrupt occurrence vary considerably depending on the hardware

architecture, case in point PIC32MX vs. PIC32MZ. Generally speaking, however, when an interrupt

occurs, the following happens:

 If (all/any) interrupts are enabled

o If that specific interrupt is enabled AND the priority for the interrupt is higher than the

current execution priority

 Halt the code execution

 Load the ISR address

 Invoke the ISR execution

Considerations when writing ISRs
An ISR can be called at any time and will run at a higher execution priority than the main loop code.

However, while it is running at a higher priority, it may not be at the highest priority and another ISR

could preempt the ISR at any time. On the PIC32 family, an ISR will not preempt itself since another

interrupt on that same IRQ will be at the same priority and will not preempt the current execution, and

thus will not cause recursive/reentrant execution. While this is true for the PIC32 MCU, it is not

necessarily true in general across other processor architectures.

4/17/2015
v1.0

When execution starts in the ISR, the IF flag will be set, and interrupts will still be enabled; even the IRQ

for the executing ISR interrupt will be enabled. This state is determined as a combination of the

hardware when the interrupt occurred and the prologue code generated by the compiler. For example,

it is very possible that interrupts are disabled by the hardware but re-enabled by the ISR prologue code;

suffice it to say, interrupts will be enabled when entering the ISR.

The ISR should be written to execute quickly—on the order of microseconds—because the ISR has

preempted the main loop which may be doing some timing critical task. In general, little consideration is

given to interrupts occurring when coding the main loop tasks. ISRs should also be written to assume

multiple interrupts have occurred—not just one—because other higher priority interrupts may have run

while multiple interrupts occurred on the lower priority IRQ. Also, it is up to the ISR to clear the IF flag

for the IRQ. Many coders will do this as the last step in the ISR, but that has its problems should another

interrupt occur while processing the ISR. As long as the IF flag is set, it is impossible to know if more

interrupts came in. A more practical solution is to clear the IF flag as the very first statement in the ISR,

then write the ISR assuming multiple interrupts had occurred. Then at the end of the ISR, check to see if

the IF flag is set (indicating an interrupt came in while processing the ISR) and loop back again and

process the ISR again to handle the new interrupt. Or, just return from the ISR and if the IF flag is set, the

interrupt controller will immediately re-invoke the ISR without ever returning to the main loop.

Remember, the interrupt controller runs on top of the event system and controls the invoking of ISRs. If

the interrupt is enabled, all it takes to invoke the ISR is to set the IF flag. This can be done by the

interrupt controller when the event triggers, or the IF flag can be manually set by software. Often times

when processing a stack of items in an ISR, it is easy to write it processing one item and then manually

setting the IF flag at the end of the ISR and let the interrupt system re-invoke the ISR to process the next

item on the stack. This technique can also be used to prime a sequence of events (such as an I2C

communication) by filling an interrupt-driven buffer and then manually triggering the interrupt by

setting the IF flag and then letting the peripheral and interrupt process flush the buffer.

Understand, since the interrupt controller is built on top of the event systems, setting the IF flag will not

trigger an event. For example, if the DMA is configured to trigger off of an event to transfer a cell of

data, setting the IF flag for that IRQ will not trigger the DMA cell transfer. This happens because the

DMA peripheral is triggered via events, not IRQs. For example, to trigger a DMA cell transfer the

DCHxECONbits.CHSIRQ is set to the IRQ (number) to specify the “event” that the DMA will trigger. While

the documentation uses the IRQ acronym, it is really the event that is being specified. If the cell transfer

is to be triggered by software, the self-resetting DCHxECONbits.CFORCE bit must be set in the DMA

controller to force the trigger. The only reason the CFORCE bit exists in the DMA controller is that it just

won’t work to set the IRQ IF flag, as the interrupt controller cannot initiate events.

PIC32 MX / MZ interrupt events

When an MX / MZ interrupt event occurs, the hardware will find the appropriate ISR based on a

hardware-defined, interrupt vector number (see PIC32 family datasheets). The hardware will use this

vector number to index into an interrupt vector table containing ISR start addresses. Then the hardware

4/17/2015
v1.0

will load the ISR start address into the program counter (a.k.a. instruction pointer) for immediate

execution.

With a hardware/software mix, the hardware and the ISR prologue code will work in cooperation to

switch the execution state from the mainline program to the ISR. On the MX and MZ MCUs, the

hardware switches the priority; however, hardware or software can save or switch the register set

depending on how the ISR was defined. The PIC32 MCU supports, to varying degrees, hardware shadow

register sets that the hardware can switch between. If a shadow register set is not used, the ISR

prologue code will save the current register set on the stack before executing the user-defined ISR code.

In order for the compiler to generate the correct prologue/epilogue code, the user must write the ISR in

a way that is consistent with how the hardware will respond. When writing the ISR, the user must

ensure the following two requirements are completed:

1) Setting the hardware control registers programmatically

2) Specifying the attributes on the ISR

a. Specify options to aid the compiler in generating fast code

b. Let the compiler generate slower code that will figure it all out at runtime

Note above that for specifying attributes on the ISR, a user has the option to either specify some

parameters to allow the compiler to generate faster code, or have the compiler generate slower code

that figures it all out. The user must be aware that specifying parameters comes with the bonus of faster

execution time, but with the risks of elusive bugs during runtime if the code is not written correctly and

consistently. These bugs will appear, for example, if the hardware runs at a different priority than that

specified on the ISR. Likewise, if the prologue /epilogue code assumes the hardware is using a shadow

register set, when the hardware actually doesn’t, the user will most definitely see register corruption.

To aid users in getting things right, the compiler has an option for dynamically figuring everything out in

the prologue code at runtime. Instead of the fast method, the user chooses to not specify any attributes

on the ISR function, which “tells” the compiler to determine the hardware condition and usage at

runtime. Note, however, that choosing this option increases the size of the prologue /epilogue code and

increases the execution time of the ISR.

Interrupt handing in the chipKIT™ core environment

Predefined ISRs

The chipKIT core libraries predefine both the hardware and software for all the required core ISRs—

including the core-timer ISR and core-peripheral ISRs. To see the peripheral definitions, open the board’s

variant “Board_Defs.h” file, where you will see things like IPL2SOFT and IPL3SRS—for priority 2

software (copied) context saving and priority 3 and shadow register-set context saving, respectively.

Keep in mind that you don’t want to change these values, as this mechanism is paired with how the

chipKIT core sets up the hardware control registers. Again, we always want the compiler

prologue/epilogue code to match with the hardware configuration to avoid elusive bugs.

4/17/2015
v1.0

User-defined ISRs

User-defined ISRs are most commonly used with external interrupts. Fortunately, the chipKIT core has a

set of built-in interrupt handlers to provide the standard Arduino functions attachInterrupt() and

detachInterrupt()for external interrupt pins. The chipKIT core provides ISRs for all five external

interrupts available on the MX and MZ MCUs. The user merely needs to create a standard C callback

function and then attach that callback function to the system using attachInterrupt(). You can

remove the callback function with detachInterrupt(). There is no need to apply any ISR function

attributes to your callback function as the core has handlers already installed to deal with the

idiosyncrasies of defining the ISRs. However, remember that your callback function will be called from

within the chipKIT-core external interrupt handler, so keep the code short, as it can be invoked at any

time. Also keep in mind that the chipKIT core defines the external interrupts to run at priority level 4

(IPL4), just above the CPU which typically runs at priority 3 (IPL3).

To define your own interrupt handlers outside of the chipKIT core, you will need to define your interrupt

handler with the appropriate interrupt attributes. Because the MX and MZ MCUs are different, you can

use the chipKIT-core defined “__USER_ISR” macro, which will adjust for either MCU. The ISR should be

declared as:

 void __USER_ISR myISR(void);

You are responsible for setting the hardware vector and the priority with setIntVector() and

setIntPriority(). Don’t worry about matching the ISR priority or register set to the hardware

because the __USER_ISR macro will instruct the compiler to generate prologue/epilogue code to

determine the hardware settings at runtime.

If you wish to use the most optimal prologue/epilogue code and define your ISR with all of the

appropriate attributes, you must do so using the native compiler interrupt attributes and set your

hardware registers consistently. This will vary from the MX and MZ and should only be considered if

such performance is needed and you are comfortable with the interrupt mechanism. Getting this wrong

will probably yield sporadic and unpredictable results.

The hardware specifics of the PIC32 MCU interrupt handling
The hardware specifics vary significantly between the MX and MZ MCUs. As was stated before, the MX

MCU has a many-to-one mapping of IRQs to interrupt vectors, whereas the MZ has a one-to-one

mapping between IRQs and interrupt vectors. It is, however, more important to note that there is a

difference in the way the vector is stored, found, and invoked. Also, the MZ family has seven shadow

register sets whereas the MX family can have either one or none.

How events and IRQs work is considerably similar between the MX and MZ, but interrupt-vector lookup

is substantially different and will be described below.

4/17/2015
v1.0

The MX MCU

Shadow Register Set

Most PIC32MX MCU variants support one shadow register set. Other PIC32MX MCU variants have no

shadow register set. For devices with a single shadow register set, the shadow register set is preassigned

to a particular priority level. In the case of chipKIT™, the shadow register set is assigned to priority 7.

(FSRSSEL => DEVCFG3: <18:16> == 7). So whenever an ISR will run at priority 7 it should use the

IPL7SRS attribute, or no attribute should be specified so the compiler generated prologue/epilogue code

will dynamically figure it out.

Interrupt Vector

At compile and link time, an interrupt vector table is created and placed in the flash address space

somewhere. It is not particularly important where, but typically it is somewhere near the beginning of

program flash. The exact location is specified by the linker script. In the case of an MPLAB X default

placement, the interrupt vector table is in bootflash at location 0x9FC01000. However, the chipKIT™

core is unable to write bootflash as the bootloader resides there, so the chipKIT core’s default linker

script loads the interrupt vector table at 0x9D000000—the very first byte in program flash. The interrupt

vector table for the MX MCU has a maximum of 64 entries.

Conceptually the interrupt vector table would just be a list of 64 ISR pointers. However, this is not how it

works. The table is structured as 64 blocks of executable space. The size of each executable block is

defined by the vector spacing, usually specified in the linker script to be 1, which indicates a spacing of

32 bytes per block. So with 64 entries at 32 bytes each the table is 64 * 32 = 2048 bytes long. There is an

additional 512 substantially unused bytes at the beginning of the table, so the table is actually 2560

bytes long. In the chipKIT core, we reserve 1 page—or 4096 bytes—for the interrupt vector table. The

additional bytes are reserved for future use, which will probably never be realized. The MX MCU allows

for vector spacing of 0, 8, 16, 32, 64, 128, 256, and 512 bytes; however, the linker spaces these at 32

byte intervals, so the linker only supports 0, 32, 64, 128, 256, and 512 bytes.

When an interrupt is taken, the MCU maps the IRQ to the interrupt vector number and then execution is

transferred to the address based off of the following calculation:

Execution Address = EBase + (vector spacing) * (interrupt vector number) + 0x200

Where:

 EBase == 0x9D000000; defined in the linker script as the start of program flash

 vector spacing == 32 bytes; defined in the linker script as _vector_spacing = 0x00000001

Execution is transferred to this address. Typically the compiler will load a jump instruction there that will

jump to the ISR defined for that interrupt vector. However, if the code can fit within the 32 bytes, the

code could be instantiated in the 32 byte block without a jump instruction. This is often done for the

general exception handler which is just a while(1), or a jump to itself.

Here is an example of the interrupt vector table generated by the chipKIT core:

4/17/2015
v1.0

Notice that vector 0 starts at 0x9D000200; it does so because of that 512 unused bytes at the start of

the table. However, notice that within the 1st 32-byte block, there seem to be two code fragments,

_new_vector_0, and _original_vector_0. These fragments are a result of the chipKIT core’s method to

resolve the many-to-one IRQ to interrupt vector problem, and the implementation of

setIntVector().

Many IRQ to one interrupt vector solution

If the chipKIT core had not fooled around with the interrupt vector table, the code found at

_original_vector_0 would have been placed at _new_vector_0; notice that it contains a simple

jump instruction. Typically the compiler would take the ISR address, generate a jump instruction, and

place the jump at the beginning of the 32-byte vector code space.

However, because several peripherals share the same interrupt vector, there is a need to dynamically

change the ISR address at runtime. If the interrupt vector table were placed in RAM, we could just go in

and modify the jump address at runtime. However, the interrupt vector table is loaded in flash, and the

jump address is fixed and cannot be changed at runtime.

To understand how to fix this problem, we need to understand how the compiler and linker go about

creating the interrupt vector table. Look at the linker script code to generate the interrupt vector table:

4/17/2015
v1.0

First notice there is a section for each interrupt vector, .vector_0, .vector_1, .vector_2 and so on.

Notice how each of these section are specifically place some multiple of _vector_spacing * 32

apart starting at _ebase_address + 0200. Then notice that in each section we are KEEP()ing code

placed by the compiler in sections .vector_new_x and .vector_x.

Before we fooled with the vector table, all of that .vector_new_x stuff wasn’t there. The compiler

would place the jump instruction to the ISR in the appropriate interrupt vector code section based off of

the vector-number attribute specified on the ISR function. When the MCU took the interrupt, it started

execution at the calculated address, and the compiler-generated jump instruction was executed to jump

to the ISR.

However, we need a way to modify the ISR jump address at runtime. The solution was to indirectly jump

from a value stored in RAM. Notice how at _new_vector_0 the code there loads a table in K0, indexes

into K0, and then jumps indirectly through K0. That table is a table the chipKIT core defines in RAM.

There is a very special assembly file vector_table.S that defines a little snippet of code that gets

placed at .vector_new_0 that generates an indirect jump through a table called

_isr_primary_install. _isr_primary_install—a 64-entry array of ISR function pointers pre-

initialized to the general exception handler.

When setIntVector() is called, the supplied ISR pointer is written to the specified vector entry in

the _isr_primary_install table, and when the interrupt is taken, the indirect jump using the new

ISR address is used.

An interesting question is, "why do we keep the original ISR jump instruction placed at

_oringinal_vector_x?" This is for backwards compatibility. With the existence of

setIntVector(), there is no need to tell the compiler which vector an ISR should be installed at; that

is because it will be done at runtime with setIntVector(). However, old code is still using the ISR

vector attribute defined on the original ISR code. We go ahead and placed this compiler-generated jump

instruction after our new indirect jump code just so we know what it is, and so we can recover it. When

the chipKIT core initializes the _isr_primary_install table, it first checks to see if that jump

instruction is something other than the general exception handler, and if it is, then the chipKIT core will

preload the _isr_primary_install entry with the original ISR address. This way, old code that

specified the vector number attribute on the ISR and did not call setIntVector() would still work;

well up until someone calls setIntVector() that overwrote that entry.

If you look closely at how setIntVector() is defined, it returns the previous value set for the vector.

Ideally, if you set and remove an ISR, you would return the entry to its original ISR value. Of course,

envisioning a rational system where an interrupt vector would be used for more than one peripheral for

the life of a sketch is difficult.

4/17/2015
v1.0

The MZ MCU

Shadow Register Sets

The MZ MCU supports seven shadow register sets. There is no requirement that a shadow register set

be used, but when the chipKIT core initializes multivector interrupts, it sets a shadow register set to each

execution priority. For ease of use, each priority level contains the numerically same shadow register

set; that is, priority 0 has shadow register set 0, 1 is 1, 2 is 2 and so on to priority 7 is shadow register

set 7. The actual code that does this is:

 PRISS = 0x76543210;

It is highly recommended that this not be tampered with as the chipKIT core makes assumptions about

this assignment of priorities and register sets.

If you write your own ISR and specify the priority and register set attribute, you should use IPLxSRS

where x is the priority you are running the ISR at. As on the MX, make sure if you specify a priority on

the ISR attribute you also set the hardware priority (IPCXx) consistently or sporadic and unpredictable

results will occur.

Interrupt Vector

The MZ MCU has a one-to-one mapping of IRQs to interrupt vectors and the problem of peripherals

sharing is not an issue with the MZ MCU. However on the MZ the interrupt vector table is part of the

memory mapped control registers starting at location 0xBF810540 (OFF000) and contains 191 vector

addresses.

Unlike the MX, the MZ does indeed have an interrupt vector table that consists solely of ISR addresses,

and when an interrupt occurs, the MZ MCU indexes into the interrupt vector table and gets the ISR

address. However, there are a few twists to that ISR address; the ISR address is relative to the EBase

address and is only 18 bits long. This means the ISR must reside within 256K of EBase. The formula for

getting the ISR address is:

 ISRAddr = ((uint32_t *) &OFF00)[vector number] + EBase;

Where:

 &OFF00 == 0xBF810540 memory mapped location of the interrupt vector table

 EBase == 0x9D000000 assigned by the default chipKIT core linker script

But there are still some issues; the ISR must be within 256K of EBase, and the chipKIT core sets EBase at

the beginning of flash, so that means all ISRs must be within the first 245K of flash. To ensure that the

ISR is placed at the beginning of flash, as part of the __USER_ISR, we place the ISR in a special

.user_interrupt code section, which the linker script places at the beginning of flash. Here is how

the __USER_ISR macro is defined:

#define __USER_ISR __attribute__((nomips16, interrupt(),

section(".user_interrupt")))

4/17/2015
v1.0

In the linker script we have the following:

Where:

_ebase_address == 0x9D000000

_RESET_ADDR == 0x9D001000

4/17/2015
v1.0

The ISRs will be place after the .reset code but before the .startup code, very low in the flash program

space, but not exactly at EBase. The implication here is that the sum in size of all ISRs must be less than

256K bytes in length, in order to be placed within the 256K range of EBase. If the actual math is done, it

is something like:

 262144 – 4096 – 16 == 258032 bytes

There are no checks if you have more than 256K of ISR code; however, if the sketch consumes that much

interrupt routine space, it is arguable that the sketch was very poorly written and probably would not

run anyway, as to just execute that much ISR code would cause all kinds of CPU starvation.

Now you might have noticed that the MZ linker script also has a vector table defined in flash. You can

see entries in the linker script for __vector_offset_0 -> __vector_offset_255; yet we said there

was no vector table in flash? By default the compiler will not put the ISR address in the interrupt vector

table; instead the compiler will put an address to the __vector_offset_x location and then place a

jump instruction there to the actual ISR. The compiler does this to circumvent the 256K EBase

restriction, as all of the jump instructions will be placed before the .startup code, well within the 256K

EBase limit, and then the jump instruction can access the entire address spaced of the processor.

However, this introduces a double jump, one from the address found in the interrupt vector table, and

then another to jump to the ISR. By using the at_vector attribute (instead of the vector attribute) you

can tell the compiler to not add this double jump and instead, put the actual ISR address in the interrupt

vector table. Here is an example of how the serial monitor UART ISR is defined with the at_vector

attribute:

void

__attribute__((nomips16,at_vector(_SER0_VECTOR),interrupt(_SER0_IPL_ISR)))

IntSer0Handler(void)

We need to be a little careful when looking at the chipKIT core interrupt definitions because these were

all written to generate the most efficient prologue/epilogue code. Doing so requires careful consistency

between the hardware register sets and priorities definitions and the ISR definition. In the chipKIT core

__USER_ISR macro we ask the compiler to generate the long form of the prologue/epilogue and

determine our register set and priority at runtime, so we do not specify any register set or priority

attributes. Likewise, by not even specifying a vector attribute, this tells the compiler to not place the ISR

in any interrupt vector table or generate a jump instruction. In a sketch, if an interrupt is to be used it is

expected that setIntVector() will be used, and setIntVector() will just write the supplied ISR

address into the interrupt vector table directly, much like setIntVector() wrote the ISR address into

the _isr_primary_install table on the MX. Of course setIntVector() takes into account the

EBase offset when storing the ISR address. As a reminder, whenever setting an interrupt with

setIntVector(), also set the priority with setIntPriority().

