Trophy for chipKIT WF32 Controlled iPad Mount for the Sight Impaired!

chipKIT Controlled iPad Mount for the Sight Impaired
chipKIT WF32 Controlled iPad Mount

In a Digilent-sponsored senior design competition, Kaitlyn Franz’s team won a second place trophy for their project. The team created a Wi-Fi controlled iPad mount for assisting the sight impaired to find lost items. To accomplish this, the team utilized a chipKIT WF32, which has a Wi-Fi capable PIC32 microcontroller on board.

To check out more details, head over to Digilent’s Blog.

VN:F [1.9.22_1171]
Rating: 1.0/10 (1 vote cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)

P-P-PIC up a TFT with chipKIT and DisplayCore

Did you know that chipKIT boards are probably the best choice for controlling a TFT screen?… Considerably better than most Arduino boards, that is for sure! I say that with confidence for three reasons:

  1. chipKIT boards typically have far more memory and computing power than many Arduino boards, and as a result, they are so much better at manipulating graphics and data for display.
  2. chipKIT boards can get the data out to the TFT screen so much faster though high-speed interfaces, so less time is spent redrawing things on the screen. You’ll find that images appear instantly, as opposed to being drawn out slowly.
  3. Finally my favourite reason: professional-grade library support. I say it’s my favourite because I designed and wrote the library myself, but I’ll tell you more about that journey later on.

First let me introduce you to a little friend of mine:

picadillo

This here is the Picadillo-35T developed by 4D Systems in Australia (also available from microchipDIRECT). The Picadillo is essentially a chipKIT MAX32 board with a nice, high-resolution TFT touch-screen strapped to the back. The meaty PIC32MX795F512L chip (also used on the MAX32) boasts plenty of RAM (128KB) and Flash (512KB) and all the other bells and whistles you have come to expect from chipKIT boards. The board also has the same connectors as the popular chipKIT Uno32, uC32, WF32 etc., so all your shields should just plug in and work. You also get sound thrown in to the mix with an on-board speaker, and of course you get an SD card slot–what self respecting board would be without one these days anyway?!

Ok, enough said about that. The main reason I write this post is to tell you of the most useful part of this Picadillo board: the TFT touch-screen. And let me tell you, it’s not just any TFT screen. It’s an above-average 3.5″, 320×480 resolution, crisp-image delivering screen. Not only that, but the way the TFT is wired to the PIC32 chip is also “above average.” The TFT connection boasts a 16-bit parallel interface, not the normal slow SPI interface that most cheap Arduino TFT screens give you–meaning that it takes one bus clock operation to output a pixel as opposed to 16 (a considerable speed increase!).

But that’s still not all! (I’m starting to sound like a TV salesman now. “Buy now and we’ll throw in this amazing clock radio and set of saucepans absolutely free!”). The TFT’s 16-bit interface has been directly connected to the “Parallel Master Port” (PMP) of the PIC32. The PMP is a bit like the old internal bus of early computers; you get an address bus, a data bus, and a bunch of control signals, meaning there’s no messy twiddling of GPIO pins with the likes of digitalWrite() (or even direct port manipulation using registers). Writing data to the screen takes just one instruction. That’s right – ONE instruction. And that means even greater speed. But wait, there’s more! (Here comes the gold-plated nose-hair trimmer…) It’s called DMA: Direct Memory Access. Guess what that can do! DMA can send data through PMP, and this essentially allows for direct communication with the TFT display, all without the MIPS CPU’s involvement! In effect, you can be outputting data to the screen whilst doing other things! All-in-all it’s really a thing of beauty… if you like that kind of thing, of course.

So what does all that mean to the layman? It means you have a well-designed, well-built bit of kit in a nice compact package with all the power you could ever want to make your perfect user interface. But isn’t programming user interfaces and drawing graphics on a TFT screen a hard job? Isn’t it fairly skilled and in-depth? Don’t you have to write reams and reams of code just to get it to print “Hello World”? Well, yes, you do. However I have already done all that for you. And that is where the journey to the core begins.

Continue reading P-P-PIC up a TFT with chipKIT and DisplayCore

VN:F [1.9.22_1171]
Rating: 9.7/10 (6 votes cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)

New FAT File System in chipKIT-core

microSD cards are supported on several chipKIT boards
microSD cards are supported on several chipKIT boards
Did you know that a robust FAT file system is now available in chipKIT-core? Keith Vogel of Digilent recently ported the file system library by ChaN at elm-chan.org. You can use this library to create and access files on microSD cards, as shown in the photo above.

But wait… what is a FAT file system, anyway?

FAT stands for File Allocation Table. It’s a method of organizing data on disk drives. Designed way back in 1977, FAT was the standard file system used on disk drives for at least two decades. While modern computers now use more sophisticated systems, FAT is still the standard for USB sticks, Flash drives and solid-state memory cards.
DSDVOL example in Arduino IDE
DSDVOL example in Arduino IDE


Several chipKIT boards (such as the FubarinoSD, WF32, Wi-FIRE, and WiFi Shield) include a microSD card slot where a solid-state memory card can be inserted. The new library allows your sketch to create and access files stored on the memory card. Files can be used for serving up web pages, storing large amounts of data collected from sensors, or anything else you can think of.

chipKIT-core combines the FAT file system with improvements to the DSPI and SoftSPI libraries. (DSPI uses the hardware SPI ports, while SoftSPI uses any combination of unused I/O pins to create a virtual SPI port.) When a microSD card is inserted, your sketch can easily mount it as a disk volume to access files. An example sketch is included with chipKIT-core, and appears as DSDVOL under the File:Examples menu item. Here is a snippet of code from DSDVOL:
Mounting a volume using the new FAT file system
Mounting a volume using the new FAT file system
Up to 5 volumes can be mounted and used at the same time. While most chipKIT boards have only one microSD card slot, virtual disk volumes in RAM or MCU Flash will be supported soon.
VN:F [1.9.22_1171]
Rating: 10.0/10 (2 votes cast)
VN:F [1.9.22_1171]
Rating: -1 (from 1 vote)

chipKIT Uno32 and Nokia 5110 LCD

I have just finished writing up a new tutorial on using the Nokia 5110 graphical LCD with the chipKIT platform. Nokia 5110 LCD was used in Nokia’s popular 5110 and 3310 model cell phones and is a very popular display among the Arduino community because of its low cost (~$3 on eBay). It is a 48×84 pixels matrix LCD driven by the low-power PCD8544 controller chip. It is powered by 3.3V and includes on-chip generation of LCD supply and bias voltages, thus requiring minimum external components for its operation. This tutorial explores the PCD8544 serial bus interface and its connection with chipKIT Uno32 board for displaying text, graphics, and bitmap.

 

chipKIT Uno32 and Nokia 5110 LCD

Read the full tutorial!

VN:F [1.9.22_1171]
Rating: 9.2/10 (5 votes cast)
VN:F [1.9.22_1171]
Rating: +3 (from 3 votes)

chipKIT WF32-based Health and Security Cloud System


Congratulations to Eusebiu Burlacu and Sebastian Pascu from Gheorghe Asachi University of Iasi, Romania, for their tie for first prize in the Digilent Design Contest Europe 2015. Their chipKIT WF32 based Health and Security Cloud System was designed to process a patient’s ECG signal, as well as monitor patient activity, and transmit this information to a doctor via Exosite’s cloud-enabled data platform. Learn more about it on Instructables.

VN:F [1.9.22_1171]
Rating: 0.0/10 (0 votes cast)
VN:F [1.9.22_1171]
Rating: +1 (from 1 vote)

Man Cave Sign – chipKIT with Bluetooth App Control

HC-05 or HC-06 Bluetooth Module

As a follow-on to a previous post about the “Man Cave Sign,” we wanted to share with you the portion that used Bluetooth and Android Apps. This tutorial by Darryl Gardner will show you how you can use the two apps he wrote (on the Google Play Store) along with an HC-05 or HC-06 Bluetooth module and a chipKIT-based device to transmit and receive data to and from the Bluetooth Module and the PIC32 MCU device. He also provides some sample sketches to get you up and running!

VN:F [1.9.22_1171]
Rating: 0.0/10 (0 votes cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)

chipKIT WF32 Control from a Networked Computer

Controlling a chipKIT WF32 from a networked computer

In this blogpost and this Instructable from Digilent, check out how you can control your chipKIT WF32 from a remote computer with internet access. Your chipKIT WF32 must be connected to a network, but other than that, all you need is an SD card for your WF32. Check out the tutorial for all the details to make your chipKIT WF32 a host webserver that allows access to the WF32 pins from a web page.

VN:F [1.9.22_1171]
Rating: 10.0/10 (2 votes cast)
VN:F [1.9.22_1171]
Rating: +1 (from 1 vote)

chipKIT Text-Message-Enabled Sign and Music Light Box (Man Cave Sign)



Using our DIY chipKIT-board tutorial, Darryl Gardner, a student of the University of South Florida, created something he calls the “Man Cave Sign” for his MakeCourse. This techie sign not only displays messages (via 5 LED dot matrices), reacts to playing music, and lights up in different colors (via 2 LED light strips), but is also controllable via Text Message or Android Apps (which he wrote) that allow the user to do many things like change the display message, control the stepper motor, the color of the light strips, and even make your phone talk out loud!

His PIC32BLUE(+) Android App and PIC32BTN Android App allow you to connect to your microcontroller using a Serial Bluetooth Module and do various things like send messages/commands to/from your Android phone and control things like servo motors, LED matrices, RGB lights, LCD screens or anything you’d like. He incorporates other technologies as well, like a microphone to adjust the light strip colors according to sound fluctuations in the room, a stepper motor to rotate a USF Bulls logo, and he powers it all with a 10,000mA battery for a battery life of over 10 hours.

In this Instructable, he provides more details along with a YouTube playlist of some Arduino tutorials he referenced for the project. Keep an eye out for more details on the various portions of this project! 😀

VN:F [1.9.22_1171]
Rating: 0.0/10 (0 votes cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)

Unix on chipKIT Fubarino SD



If you haven’t seen this yet, you’ll likely be impressed. RetroBSD (Unix) running on a chipKIT Fubarino SD? Yes, you heard that right 🙂 Hackaday featured this post referencing Serge Vakulenko’s post, where he provides instructions for how you too can run RetroBSD on your Fubarino SD and then compile and assemble away on your mini computer!

Have fun and enjoy!

VN:F [1.9.22_1171]
Rating: 10.0/10 (1 vote cast)
VN:F [1.9.22_1171]
Rating: +1 (from 1 vote)