chipKIT-core v1.3.0 and v1.3.1 Released and Clicker 2 Support

Clicker 2 for PIC32MX

The chipKIT development team is happy to announce the chipKIT-core releases: v1.3.0 and v1.3.1, the former being the main release, with the latter simply updating the compiler from v1.40 to v1.42.

These two new releases don’t necessarily add any enormous new features, but they do have several nice bug fixes and some good improvements in the functionality available to a sketch. One noteworthy fix in v1.3.0 is the update to the bootloader host application “pic32prog” to support MikroElektronika’s Clicker 2 for PIC32MX. This amazing board provides two mikroBUS sockets for click boards — MikroE’s little peripheral add-on boards — providing for an endless range of project possibilities. Check out the release notes for all the details.

You can obtain the release of your choice in a couple of different ways depending on how you’ve installed chipKIT core in the past. You can either use the Boards Manager inside the Arduino IDE, or you can download the zip file for your platform (Arm Linux, Linux32, Linux64, MacOSX or Windows).

We hope you benefit greatly from these updates!

VN:F [1.9.22_1171]
Rating: 9.4/10 (5 votes cast)
VN:F [1.9.22_1171]
Rating: +1 (from 1 vote)

Use an RC Servo input to control a stepper motor output

Have you ever wondered if you could control a stepper motor’s speed and direction using an RC servo controller (for example from the stick of a RC airplane transmitter)? Wonder no longer – using a Fubarino Mini and a Big Easy Driver stepper motor controller, Brian Schmalz was able to write a simple sketch to enable precise control of a stepper motor from an RC servo input signal.

This sketch uses a 32-bit hardware timer and output-compare module on the PIC32 so that very accurate step speeds are generated. Step speeds from 1 step per second to over 12,000,000 steps per second can be configured using #define values in the sketch. There is also a configurable dead zone in the stick’s center position.

One advantage of this type of control system over a simple DC motor controller is that the speed of the stepper is not dependent on the load (to a point), so you can very accurately control the speed of whatever you are moving even if the load torque changes over time.

Check out the simple video of this sketch in action:

For complete instructions on how to duplicate this setup, see the complete description here on Brian’s site: RC Servo to Stepper Sketch

VN:F [1.9.22_1171]
Rating: 6.7/10 (3 votes cast)
VN:F [1.9.22_1171]
Rating: 0 (from 0 votes)